LONG LIFE, HIGH QUALITY DC BRUSH MOTORS # **DMN Series** **NIDEC SERVO CORPORATION** # LONG LIFE, HIGH QUALITY DC BRUSH MOTORS An optimized solution is achieved by combining our latest design and production technologies. # **Features** - Long-life: Intermittent operation over 1 million cycles with optmized brush design. *1 - Continuous operating life of 3000 hours. *1 - High output: High heat dissipation and heat resistance achieves higher output - ■High strength: High radial load capacity due to robust construction, large diameter output shaft and ball bearings - Low noise and increased insulation due to new resin brush holders. - Large selection of gear heads and reduction ratios are available to meet all needs. - Also available with magnetic revolution sensor and noise filter *2 #### **I**SELECTION CHART | | | Speci | fications | | | | | | Gearbox | | | | | |---------|--------|---------|-------------------|-------|---------|----------|---------------|--------|---------------|--------|--------|--------|--------| | | | | | | Α | L | 36G | 43G | 50G | 6DG | 6DGF | 8DG | 8DGF | | | Output | Voltage | Holding
torque | Speed | | | 2 | | | | | 199 | | | | w | V | mN•m | r/min | 36x61mm | 38x100mm | <i>ϕ</i> 37mm | ☐ 43mm | <i>∮</i> 50mm | ☐ 61mm | ☐ 61mm | □ 80mm | ☐ 80mm | | DMN29BA | | 12 | 7.0 | 0700 | • | • | • | • | • | • | | | | | DMN29BB | 3.0 | 24 | 7.8 | 3700 | • | • | • | • | • | • | | | | | DMN37SA | | 12 | | | | | | | • | • | | | | | DMN37SB | 4.6 | 24 | 9.8 | 4500 | | | | | • | • | | | | | DMN37BA | | 12 | | | | | | | • | • | • | • | | | DMN37BB | 7.2 | 24 | 14.7 | 4700 | | | | | • | • | • | • | | | DMN37KA | 9.2 | 12 | 24.5 | 3600 | | | | | • | • | • | • | | | DMN37KB | 3.2 | 24 | 24.0 | 3000 | | | | | • | • | • | • | | | DMN37JB | 14.7 | 24 | 39.2 | 3600 | | | | | | | • | • | • | #### ■MOTOR DESIGNATIONS ^{*1} Differs depending on environment and application. Contact us for details. *2 Scheduled for release April2006 # Long Life # Life time | DME Series | DME25 | DME33 | DME37 DME44 | | | | |---------------|-------|-----------|-------------|-------|------|--| | DIVIL Oches | | 1000Hours | 2000Hours | | | | | DMN Series | | DMN29 | | DM | IN37 | | | Divily Selles | | 3000Hours | 3000 | Hours | | | #### ■Continuous Operation : *The motor life-time is dependent upon actual application conditions. Please consult us for more information. # Brush Wear Rate # **■Brush Length** # Comparison of Noise # By adoption of Resin Brush Holder, Noise reduced by 8dB compared to DME25, 33, 34 # DME37 ⇒ DMN37 By adoption of Resin Brush Holder, Noise reduced by 8dB compared to DME37 # **DMN29 Motor** # **DMN29 Series** # Specification | | | | | RATED | | | NO LOAD | | STALL | | WEIGHT | | |---------|---------|---------|------|-------|---------|-------|---------|-------|-------|-------|--------|-------------| | TYPE | OUT PUT | VOLTAGE | TOR | QUE | CURRENT | SPEED | CURRENT | SPEED | TOR | QUE | VV EI | G П1 | | | W | V | mN∙m | oz∙in | А | r/min | А | r/min | mN∙m | oz•in | g | lb | | DMN29BA | 3.0 | 12 | 7.8 | 1.11 | 0.42 | 3700 | 0.07 | 5000 | 30 | 4.17 | 90 | 0.20 | | DMN29BB | 3.0 | 24 | 7.8 | 1.11 | 0.21 | 3700 | 0.05 | 5000 | 30 | 4.17 | 90 | 0.20 | ## Outline # **■**CURRENT, SPEED-TORQUE CURVE ### **CONNECTION** # **DC Brush Motors** # Specification | | GEAR | DMN29BA-002
DMN29BA-003 | | | | | | | | |---|-------|----------------------------|--------------|-------|--|--|--|--|--| | | RATIO | RATED 1 | RATED TORQUE | | | | | | | | | | N∙m | oz•in | r/min | | | | | | | * | 78.9 | 0.190 | 27.8 | 56 | | | | | | Rotation of gearbox shaft is in reverse of rotation of motor. # Outline # **Specification** | GEAR | DMN29BL□◇ | | | | | | | | |-------|-----------|-------|-------|--|--|--|--|--| | RATIO | RATED 1 | SPEED | | | | | | | | | N∙m | oz•in | r/min | | | | | | | 30 | 0.14 | 19.5 | 123 | | | | | | | 50 | 0.23 | 32.0 | 74.0 | | | | | | | 120 | 0.56 | 77.9 | 30.8 | | | | | | | 150 | 0.69 | 90.8 | 24.7 | | | | | | | 200 | 0.92 | 131 | 18.5 | | | | | | | 255 | 0.98 | 139 | 15.3 | | | | | | | | | | | | | | | | - XEnter the required reduction ratio in the \square . - %Enter the required voltage A or B in the \diamondsuit . | | | DM | NOODOGO | \wedge | |---|-------|---------|----------|----------| | | GEAR | | N29B36G_ | • | | | RATIO | RATED T | ORQUE | SPEED | | | | N∙m | oz•in | r/min | | | 10 | 0.064 | 9.04 | 370 | | * | 18 | 0.098 | 13.9 | 206 | | * | 20 | 0.11 | 15.3 | 185 | | * | 30 | 0.17 | 23.6 | 123 | | | 50 | 0.25 | 36.2 | 74.0 | | | 60 | 0.30 | 43.1 | 61.7 | | | 75 | 0.38 | 54.3 | 49.3 | | | 100 | 0.39 | 55.6 | 40.1 | | * | 120 | 0.39 | 55.6 | 34.0 | | * | 150 | 0.39 | 55.6 | 28.4 | | * | 180 | 0.39 | 55.6 | 24.4 | | * | 200 | 0.39 | 55.6 | 22.2 | | * | 250 | 0.39 | 55.6 | 18.2 | | * | 300 | 0.39 | 55.6 | 15.4 | | | 400 | 0.39 | 55.6 | 11.7 | | | 500 | 0.39 | 55.6 | 9.5 | | | 600 | 0.39 | 55.6 | 8.0 | - %Enter the required reduction ratio in the \square . - Rotation of gearbox shaft is in reverse of rotation of motor. - ※Enter the required voltage A or B in the ♦. # Outline # **Intermittent Operation** ## Specification | | 0515 | DM | N29B43G□ | \Diamond | |---|---------------|---------|----------|------------| | | GEAR
RATIO | RATED 1 | ORQUE | SPEED | | | | N∙m | oz•in | r/min | | | 10 | 0.064 | 9.04 | 370 | | * | 18 | 0.098 | 13.9 | 206 | | * | 20 | 0.11 | 15.3 | 185 | | * | 30 | 0.17 | 23.6 | 123 | | | 50 | 0.25 | 36.2 | 74.0 | | | 60 | 0.30 | 43.1 | 61.7 | | | 75 | 0.38 | 54.3 | 49.3 | | | 100 | 0.39 | 55.6 | 40.1 | | * | 120 | 0.39 | 55.6 | 34.0 | | * | 150 | 0.39 | 55.6 | 28.4 | | * | 180 | 0.39 | 55.6 | 24.4 | | * | 200 | 0.39 | 55.6 | 22.2 | | * | 250 | 0.39 | 55.6 | 18.2 | | * | 300 | 0.39 | 55.6 | 15.4 | | | 400 | 0.39 | 55.6 | 11.7 | | | 500 | 0.39 | 55.6 | 9.5 | | | 600 | 0.39 | 55.6 | 8.0 | - XEnter the required reduction ratio in the \square . - Rotation of gearbox shaft is in reverse of rotation of motor. - ※Enter the required voltage A or B in the ♦. | | OFAR | DMI | N29B50G□< | > | |---|---------------|-------|-----------|-------| | | GEAR
RATIO | RATED | TORQUE | SPEED | | | | N∙m | oz•in | r/min | | | 9 | 0.057 | 8.07 | 411 | | | 18 | 0.11 | 15.3 | 206 | | * | 27 | 0.15 | 26.9 | 137 | | * | 36 | 0.21 | 29.2 | 103 | | * | 54 | 0.31 | 43.1 | 68.5 | | * | 72 | 0.41 | 58.4 | 51.4 | | | 96 | 0.49 | 72.3 | 38.5 | | | 144 | 0.74 | 104 | 25.7 | | | 192 | 0.98 | 139 | 19.3 | | | 256 | 0.98 | 139 | 15.8 | - \times Enter the required reduction ratio in the \square . - Rotation of gearbox shaft is in reverse of rotation of motor. - XEnter the required voltage A or B in the \diamondsuit . | | 6DG□ | DM | IN29B6HP◇ | | | | | | | |---|-------|---------|-----------|-------|--|--|--|--|--| | | GEAR | RATED 7 | TORQUE | SPEED | | | | | | | | RATIO | N∙m | oz•in | r/min | | | | | | | | 3 | 0.019 | 26.4 | 1233 | | | | | | | | 3.6 | 0.023 | 32.0 | 1028 | | | | | | | | 5 | 0.032 | 44.5 | 740 | | | | | | | | 6 | 0.038 | 54.3 | 617 | | | | | | | | 7.5 | 0.048 | 68.5 | 493 | | | | | | | | 9 | 0.057 | 8.07 | 411 | | | | | | | | 12.5 | 0.079 | 11.3 | 296 | | | | | | | | 15 | 0.10 | 13.5 | 247 | | | | | | | | 18 | 0.11 | 15.3 | 206 | | | | | | | * | 25 | 0.14 | 19.5 | 148 | | | | | | | * | 30 | 0.17 | 2.6 | 123 | | | | | | | * | 36 | 0.21 | 29.2 | 103 | | | | | | | * | 50 | 0.29 | 40.3 | 74.0 | | | | | | | * | 60 | 0.34 | 48.7 | 61.7 | | | | | | | * | 75 | 0.43 | 59.8 | 49.3 | | | | | | | * | 90 | 0.51 | 72.3 | 41.1 | | | | | | | * | 100 | 0.57 | 80.7 | 37.0 | | | | | | | * | 120 | 0.69 | 97.4 | 30.8 | | | | | | | | 150 | 0.77 | 109 | 24.7 | | | | | | | | 180 | 0.93 | 131 | 20.6 | | | | | | | | 225 | 0.98 | 136 | 17.3 | | | | | | | | 250 | 0.98 | 139 | 16.0 | | | | | | | | 300 | 0.98 | 139 | 13.9 | | | | | | | | 360 | 0.98 | 139 | 12.0 | | | | | | | | 450 | 0.98 | 139 | 9.9 | | | | | | | * | 500 | 0.98 | 139 | 8.9 | | | | | | | * | 600 | 0.98 | 139 | 7.6 | | | | | | | * | 750 | 0.98 | 139 | 6.2 | | | | | | | * | 900 | 0.98 | 139 | 5.2 | | | | | | | * | 1500 | 0.98 | 139 | 3.2 | | | | | | | * | 1800 | 0.98 | 139 | 2.7 | | | | | | - *Enter the required reduction ratio in the \square . - Rotation of gearbox shaft is in reverse of rotation of motor. - %Enter the required voltage A or B in the \diamondsuit . ### Outline # **DMN37 Motor** # **DMN37 Series** # Specification | | | | RAT | ΓED | | | NO L | .OAD | STA | ALL | | | |---------|---------|--------------------|------|---------|-------|---------------|------|--------|------|--------|-----|------| | TYPE | OUT PUT | PUT VOLTAGE TORQUE | | CURRENT | SPEED | CURRENT SPEED | | TORQUE | | WEIGHT | | | | | W | V | mN∙m | oz∙in | Α | r/min | Α | r/min | mN∙m | oz•in | g | lb | | DMN37SA | 4.6 | 12 | 9.8 | 1.39 | 0.78 | 4500 | 0.26 | 5500 | 54 | 7.64 | 130 | 0.29 | | DMN37SB | 4.6 | 24 | 9.8 | 1.39 | 0.37 | 4500 | 0.12 | 5500 | 54 | 7.64 | 130 | 0.29 | | DMN37BA | 7.2 | 12 | 14.7 | 2.09 | 1.01 | 4700 | 0.25 | 5500 | 98 | 13.89 | 180 | 0.40 | | DMN37BB | 7.2 | 24 | 14.7 | 2.09 | 0.53 | 4700 | 0.13 | 5500 | 98 | 13.89 | 180 | 0.40 | | DMN37KA | 9.2 | 12 | 24.5 | 3.48 | 1.20 | 3600 | 0.27 | 4300 | 160 | 23.61 | 210 | 0.46 | | DMN37KB | 9.2 | 24 | 24.5 | 3.48 | 0.60 | 3600 | 0.14 | 4300 | 160 | 23.61 | 210 | 0.46 | | DMN37JB | 14.7 | 24 | 39.2 | 5.56 | 0.94 | 3600 | 0.16 | 4300 | 240 | 24.72 | 240 | 0.53 | ## **■**Connection ※Intermittent ratings are given for DMN37JB. (DUTY50%) #### Outline # **■**CURRENT, SPEED-TORQUE CURVE # **DMN37 Motor** # Specification | | 0545 | D | MN37S50G | \Diamond | D | MN37B50G | \Diamond | DMN37K50G□♦ | | | | |---|---------------|-------|--------------|------------|--------------|----------|------------|--------------|-------|-------|--| | | GEAR
RATIO | RATED | TORQUE SPEED | | RATED TORQUE | | SPEED | RATED TORQUE | | SPEED | | | | RATIO | N∙m | oz•in | r/min | N∙m | oz∙in | r/min | N∙m | oz•in | r/min | | | | 9 | 0.071 | 10.2 | 500 | 0.10 | 15.3 | 522 | 0.17 | 25.0 | 400 | | | | 18 | 0.13 | 19.5 | 250 | 0.21 | 30.6 | 261 | 0.35 | 50.1 | 200 | | | * | 27 | 0.18 | 28.4 | 166 | 0.28 | 40.3 | 174 | 0.48 | 68.2 | 133 | | | * | 36 | 0.25 | 36.2 | 125 | 0.38 | 54.3 | 130 | 0.63 | 90.4 | 100 | | | * | 54 | 0.38 | 54.3 | 83.3 | 0.58 | 82.1 | 87.0 | 0.96 | 136 | 66.6 | | | * | 72 | 0.51 | 72.3 | 62.5 | 0.76 | 110 | 65.2 | 0.98 | 136 | 52.3 | | XEnter the required reduction ratio in the \square . Rotation of gearbox shaft is in reverse of rotation of motor. [※]Enter the required voltage A or B in the ♦. | | 6DG□ | С | MN37S6HP | > | С | MN37B6HP | > | | MN37K6HP | > | |---|------------|-------|----------|-------|-------|----------|-------|---------|----------|-------| | | GEAR RATIO | RATED | TORQUE | SPEED | RATED | TORQUE | SPEED | RATED : | TORQUE | SPEED | | | GLAN NATIO | N∙m | oz•in | r/min | N∙m | oz•in | r/min | N∙m | oz•in | r/min | | Γ | 3 | 0.024 | 3.34 | 1500 | 0.035 | 5.0 | 1567 | 0.060 | 8.49 | 1200 | | | 3.6 | 0.028 | 4.03 | 1250 | 0.042 | 6.0 | 1306 | 0.072 | 10.2 | 1000 | | | 5 | 0.039 | 5.56 | 900 | 0.059 | 8.3 | 940 | 0.098 | 13.9 | 720 | | | 6 | 0.047 | 6.68 | 750 | 0.072 | 10.2 | 783 | 0.12 | 16.7 | 600 | | Г | 7.5 | 0.060 | 10.2 | 600 | 0.089 | 12.7 | 627 | 0.15 | 20.9 | 480 | | | 9 | 0.072 | 13.9 | 500 | 0.11 | 15.3 | 522 | 0.18 | 25.0 | 400 | | | 12.5 | 0.098 | 16.7 | 360 | 0.15 | 20.9 | 376 | 0.25 | 34.8 | 288 | | | 15 | 0.12 | 19.5 | 300 | 0.18 | 25.0 | 313 | 0.29 | 41.7 | 240 | | Γ | 18 | 0.14 | 25.0 | 250 | 0.22 | 30.6 | 261 | 0.35 | 0.00 | 200 | | * | 25 | 0.18 | 30.6 | 180 | 0.26 | 37.6 | 188 | 0.44 | 62.6 | 144 | | * | 30 | 0.22 | 36.2 | 150 | 0.32 | 45.9 | 157 | 0.53 | 75.1 | 120 | | * | 36 | 0.25 | 50.1 | 125 | 0.38 | 54.3 | 131 | 0.64 | 90.4 | 100 | | * | 50 | 0.35 | 59.8 | 90.0 | 0.53 | 75.1 | 94 | 0.89 | 127 | 72 | | * | 60 | 0.42 | 75.1 | 75.0 | 0.64 | 90.4 | 78 | 0.98 | 139 | 61 | | * | 75 | 0.53 | 90.4 | 60.0 | 0.80 | 114 | 63 | 0.98 | 139 | 51 | | * | 90 | 0.64 | 102 | 50.0 | 0.96 | 136 | 52 | 0.98 | 139 | 43 | | * | 100 | 0.72 | 121 | 45.0 | 0.98 | 139 | 48 | 0.98 | 139 | 39 | | * | 120 | 0.85 | 136 | 37.5 | 0.98 | 139 | 41 | 0.98 | 139 | 33 | | | 150 | 0.96 | 139 | 30.0 | 0.98 | 139 | 33 | 0.98 | 139 | 27 | | | 180 | 0.98 | 139 | 25.9 | 0.98 | 139 | 28 | 0.98 | 139 | 23 | | | 225 | 0.98 | 139 | 21.4 | 0.98 | 139 | 23 | 0.98 | 139 | 18 | | L | 250 | 0.98 | 139 | 19.6 | 0.98 | 139 | 21 | 0.98 | 139 | 17 | | | 300 | 0.98 | 139 | 16.6 | 0.98 | 139 | 17 | 0.98 | 139 | 14 | | | 360 | 0.98 | 139 | 14.1 | 0.98 | 139 | 15 | 0.98 | 139 | 12 | | | 450 | 0.98 | 139 | 11.5 | 0.98 | 139 | 12 | 0.98 | 139 | 9.3 | | * | 500 | 0.98 | 139 | 10.3 | 0.98 | 139 | 11 | 0.98 | 139 | 8.4 | | * | 600 | 0.98 | 139 | 8.7 | 0.98 | 139 | 8.9 | 0.98 | 139 | 7.0 | | * | 750 | 0.98 | 139 | 7.0 | 0.98 | 139 | 7.2 | 0.98 | 139 | 5.6 | | * | 900 | 0.98 | 139 | 5.9 | 0.98 | 139 | 6.0 | 0.98 | 139 | 4.7 | | * | 1500 | 0.98 | 139 | 3.6 | 0.98 | 139 | 3.6 | 0.98 | 139 | 2.8 | | * | 1800 | 0.98 | 139 | 3.0 | 0.98 | 139 | 3.0 | 0.98 | 139 | 2.4 | XEnter the required reduction ratio in the \square . ### Outline ## NOTE: 6DG gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes. - Gearboxes with 4.5mm diameter mounting holes are available from stock. When ordering, please write the motor model and gearbox model numbers - separately, as in the following example: DMN37B6HP \diamondsuit (Pinion shaft motor) 6DG \square (Gearbox) - Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example: DMN37B6H□◊ - ullet Enter the required reduction ratio in the \square . - Enter the required voltage A or B in the ♦. | MODEL | | L | WEIGHT | | | |-----------------|------|-------|--------|------|--| | WODEL | mm | inch | g | lb | | | DMN37S6HP♦+6DG□ | 75.7 | 2.980 | 390 | 0.86 | | | DMN37B6HP◇+6DG□ | 83.7 | 3.295 | 440 | 0.97 | | | DMN37K6HP◇+6DG□ | 88.7 | 3.492 | 470 | 1.0 | | Rotation of gearbox shaft is in reverse of rotation of motor. [※]Enter the required voltage A or B in the ♦. | 6DG□F | DMN37B6HFP♦ | | DMN37K6HFP♦ | | | DMN37J6HFPB | | | | | |------------|--------------------|-------|-------------|--------------------|-------|-------------|--------------|-------|-------|--| | GEAR RATIO | RATED TORQUE SPEED | | SPEED | RATED TORQUE SPEED | | | RATED TORQUE | | SPEED | | | GEAN NATIO | N∙m | oz•in | r/min | N∙m | oz•in | r/min | N∙m | oz•in | r/min | | | 3 | 0.035 | 5.01 | 1560 | 0.059 | 13.5 | 1200 | 0.095 | 13.5 | 1200 | | | 3.6 | 0.042 | 5.98 | 1300 | 0.072 | 15.3 | 1000 | 0.11 | 15.3 | 1000 | | | 5 | 0.059 | 0.00 | 940 | 0.098 | 22.3 | 720 | 0.16 | 22.3 | 720 | | | 6 | 0.072 | 10.2 | 783 | 0.12 | 26.4 | 600 | 0.19 | 26.4 | 600 | | | 7.5 | 0.089 | 12.7 | 626 | 0.15 | 33.4 | 480 | 0.24 | 33.4 | 480 | | | 9 | 0.11 | 15.3 | 522 | 0.18 | 40.3 | 400 | 0.28 | 40.3 | 400 | | | 12.5 | 0.13 | 18.1 | 376 | 0.22 | 50.1 | 288 | 0.35 | 50.1 | 288 | | | 15 | 0.16 | 22.3 | 313 | 0.26 | 59.8 | 240 | 0.42 | 59.8 | 240 | | | 18 | 0.19 | 26.4 | 261 | 0.32 | 72.3 | 200 | 0.51 | 72.3 | 200 | | | 25 | 0.26 | 37.6 | 188 | 0.44 | 102 | 144 | 0.72 | 102 | 144 | | | 30 | 0.32 | 45.9 | 156 | 0.53 | 121 | 120 | 0.85 | 121 | 120 | | | 36 | 0.38 | 54.3 | 130 | 0.64 | 139 | 100 | 0.98 | 139 | 100 | | | 50 | 0.48 | 68.2 | 94.0 | 0.80 | 181 | 72.0 | 1.3 | 181 | 72.0 | | | 60 | 0.58 | 82.1 | 78.3 | 0.96 | 209 | 60.0 | 1.5 | 209 | 60.0 | | | 75 | 0.73 | 103 | 62.6 | 1.2 | 264 | 48.0 | 1.9 | 264 | 48.0 | | | 90 | 0.86 | 122 | 52.2 | 1.4 | 320 | 40.0 | 2.3 | 320 | 40.0 | | | 100 | 0.96 | 136 | 47.0 | 1.6 | 348 | 36.0 | 2.5 | 348 | 36.3 | | | 120 | 1.2 | 163 | 39.1 | 1.9 | 348 | 30.0 | 2.5 | 348 | 31.2 | | | 150 | 1.4 | 199 | 31.3 | 2.4 | 348 | 24.0 | 2.5 | 348 | 25.7 | | | 180 | 1.7 | 235 | 26.1 | 2.5 | 348 | 20.6 | 2.5 | 348 | 21.8 | | $[\]times$ Enter the required reduction ratio in the \square . # Outline #### NOTE: 6DGF gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes. - Gearboxes with 4.5mm diameter mounting holes are available from stock. When ordering, please write the motor model and gearbox model numbers separately, as in the following example: DMN37B6HFP \Diamond (Pinion shaft motor) 6DG \Box F (Gearbox) - Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example : DMN37B6H□F♦ - ullet Enter the required reduction ratio in the \square . - \bullet Enter the required voltage A or B in the \diamondsuit . | MODEL | | L | WEIGHT | | | |-------------------|-------|-------|--------|-----|--| | WODEL | mm | inch | g | lb | | | DMN37B6HFP◇+6DG□F | 98.7 | 3.880 | 580 | 1.3 | | | DMN37K6HFP◇+6DG□F | 103.7 | 4.083 | 610 | 1.3 | | | DMN37J6HFPB+6DG□F | 108.7 | 4.280 | 640 | 1.4 | | ^{*} Rotation of gearbox shaft is in reverse of rotation of motor. Enter the required voltage A or B in the $extrm{$\diamondsuit$}$. | | 8DG□ | G□ DMN37B8HP♦ | | | DMN37K8HP♦ | | | DMN37J8HPB | | | |---|------------|---------------|--------|-------|------------|--------|-------|------------|--------|-------| | | GEAR RATIO | RATED 7 | TORQUE | SPEED | RATED | TORQUE | SPEED | RATED 1 | TORQUE | SPEED | | | GEAN NATIO | N∙m | oz•in | r/min | N∙m | oz•in | r/min | N∙m | oz•in | r/min | | | 3 | 0.035 | 5.01 | 1567 | 0.060 | 8.49 | 1200 | 0.10 | 12.5 | 1200 | | | 3.6 | 0.042 | 5.98 | 1306 | 0.072 | 10.2 | 1000 | 0.11 | 15.3 | 1000 | | | 5 | 0.060 | 8.49 | 940 | 0.10 | 13.9 | 720 | 0.16 | 22.3 | 720 | | | 6 | 0.072 | 10.2 | 783 | 0.12 | 16.7 | 600 | 0.19 | 26.4 | 600 | | | 7.5 | 0.089 | 12.7 | 627 | 0.15 | 20.9 | 480 | 0.24 | 33.4 | 480 | | | 9 | 0.11 | 15.3 | 522 | 0.18 | 25.0 | 400 | 0.28 | 40.3 | 400 | | L | 12.5 | 0.15 | 20.9 | 376 | 0.25 | 34.8 | 288 | 0.39 | 55.6 | 288 | | | 15 | 0.18 | 25.0 | 313 | 0.29 | 41.7 | 240 | 0.47 | 66.8 | 240 | | | 18 | 0.22 | 306 | 261 | 0.35 | 50.1 | 200 | 0.57 | 80.7 | 200 | | * | 25 | 0.26 | 37.6 | 188 | 0.44 | 62.6 | 144 | 0.72 | 102 | 144 | | * | 30 | 0.32 | 45.9 | 157 | 0.53 | 75.1 | 120 | 0.85 | 121 | 120 | | * | 36 | 0.38 | 54.3 | 131 | 0.64 | 90.4 | 100 | 1.0 | 139 | 100 | | * | 50 | 0.53 | 75.1 | 94 | 0.89 | 127 | 72 | 1.4 | 195 | 72 | | * | 60 | 0.64 | 90.4 | 78 | 1.1 | 153 | 60 | 1.7 | 236 | 60 | | * | 75 | 0.80 | 114 | 63 | 1.3 | 181 | 48 | 2.2 | 306 | 48 | | * | 90 | 0.96 | 136 | 52 | 1.6 | 223 | 40 | 2.5 | 362 | 40 | | * | 100 | 1.1 | 153 | 47 | 1.8 | 250 | 36 | 2.8 | 403 | 36 | | * | 120 | 1.3 | 181 | 39 | 2.2 | 306 | 30 | 3.4 | 487 | 30 | | * | 150 | 1.4 | 195 | 31 | 2.4 | 334 | 24 | 3.8 | 543 | 24 | | * | 180 | 1.7 | 236 | 26 | 2.8 | 403 | 20 | 3.9 | 556 | 21 | | | 225 | 2.2 | 306 | 21 | 3.6 | 515 | 16 | 3.9 | 556 | 17 | | | 250 | 2.4 | 334 | 19 | 3.9 | 556 | 14 | 3.9 | 556 | 15 | | | 300 | 2.8 | 403 | 16 | 3.9 | 556 | 12 | 3.9 | 556 | 13 | | | 360 | 3.4 | 487 | 13 | 3.9 | 556 | 11 | 3.9 | 556 | 11 | | | 450 | 3.9 | 556 | 11 | 3.9 | 556 | 8.7 | 3.9 | 556 | 9.0 | | * | 500 | 3.9 | 556 | 10 | 3.9 | 556 | 7.8 | 3.9 | 556 | 8.1 | | * | 600 | 3.9 | 556 | 8.2 | 3.9 | 556 | 6.6 | 3.9 | 556 | 6.8 | | * | 750 | 3.9 | 556 | 6.7 | 3.9 | 556 | 5.4 | 3.9 | 556 | 5.5 | | * | 900 | 3.9 | 556 | 5.7 | 3.9 | 556 | 4.5 | 3.9 | 556 | 4.6 | | * | 1500 | 3.9 | 556 | 3.5 | 3.9 | 556 | 2.8 | 3.9 | 556 | 2.8 | | * | 1800 | 3.9 | 556 | 2.9 | 3.9 | 556 | 2.3 | 3.9 | 556 | 2.4 | [※]Enter the required reduction ratio in the □. Rotation of gearbox shaft is in reverse of rotation of motor. XEnter the required voltage A or B in the \diamondsuit . | 8DG□F | DMN37J8HFPB | | | | |-------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | GEAR | RATED T | SPEED | | | | RATIO | N∙m | oz•in | r/min | | | 3 | 0.10 | 13.5 | 1200 | | | 3.6 | 0.11 | 15.3 | 1000 | | | 5 | 0.16 | 22.3 | 720 | | | 6 | 0.19 | 26.4 | 600 | | | 7.5 | 0.24 | 33.4 | 480 | | | 9 | 0.29 | 40.3 | 400 | | | 12.5 | 0.40 | 55.6 | 288 | | | 15 | 0.48 | 66.8 | 240 | | | 18 | 0.57 | 80.7 | 200 | | | 25 | 0.71 | 102 | 144 | | | 30 | 0.86 | 121 | 120 | | | 36 | 1.0 | 139 | 100 | | | 50 | 1.4 | 198 | 72 | | | 60 | 1.7 | 236 | 60 | | | 75 | 2.1 | 306 | 48 | | | 90 | 2.6 | 362 | 40 | | | 100 | 2.9 | 403 | 36 | | | 120 | 3.4 | 467 | 30 | | | 150 | 3.9 | 543 | 24 | | | 180 | 4.6 | 654 | 20 | | | | GEAR RATIO 3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90 100 120 150 | GEAR RATED T RATED T RATIO N·m 3 0.10 3.6 0.11 5 0.16 6 0.19 7.5 0.24 9 0.29 12.5 0.40 15 0.48 18 0.57 25 0.71 30 0.86 36 1.0 50 1.4 60 1.7 75 2.1 90 2.6 100 2.9 120 3.4 150 3.9 | GEAR RATED TORQUE RATIO N·m oz·in 3 0.10 13.5 3.6 0.11 15.3 5 0.16 22.3 6 0.19 26.4 7.5 0.24 33.4 9 0.29 40.3 12.5 0.40 55.6 15 0.48 66.8 18 0.57 80.7 25 0.71 102 30 0.86 121 36 1.0 139 50 1.4 198 60 1.7 236 75 2.1 306 90 2.6 362 100 2.9 403 120 3.4 467 150 3.9 543 | | XEnter the required reduction ratio in the \square . ^{*} Rotation of gearbox shaft is in reverse of rotation of motor. # **DC BRUSH Motors** # **DMN** Series #### Structure #### Brushes The brush is an important part that serves as a commutating mechanism. The brush's service life (in accordance with wear) will be the service life of the direct-current motor. #### Commutator In general, copper is the material used, but to counteract how it softens at high temperatures, a small amount of silver is mixed with it. #### · Armature coil In general, electric wire known as magnet wire is used. Wire diameter is selected in accordance with the motor's specifications, and the wire is connected to the commutator bar by means of welding, soldering or other such methods. #### Armature For the armature, magnetic steel sheet is used to increase magnetic flux density. #### Magnets Broadly speaking, the magnets used in the motor can be classified in terms of whether they are ferrite, alnico, rare earth, etc. Magnets are selected in accordance with usage purpose, based on their features. #### Bearing There are ball bearings and sleeve bearings, and they are used in accordance with purpose. The ball bearing is the type that is appropriate for uses involving large bending loads. #### Current and rotating torque characteristics The magnet DC motor has dropping characteristics (rotation speed) and rising characteristics, as shown in Figure 2. When applied voltage V is changed, as shown in Figure 2, torque rotating speed characteristics will be proportional to the value for V, but current torque characteristics will only change very slightly. (For details, please refer to the relational expression for current and torque rotating speed.) ### How to view characteristics As shown in Figure 2, at applied voltage V, when load torque T_L is added to the motor, rotating speed and current will be N_L and I_L , respectively. When V has been changed to V'V'', the result can be similarly sought. Noload rotating speed, No, and stalling (starting) torque, T_S , will be proportional to the applied voltage; thus, the values for when a 24V motor, for example, is used at 20V or 18V will be on the order of those shown in Table 1. (No-load current Io will be sufficiently small compared with the stalling current and can thus be disregarded.) When changing the rated voltage substantially (from 24V to 6V, for example), it will be necessary to depend on actual measurement. However, use at something other than the rated voltage could cause abnormal brush wear and startup malfunctions. Thus, we ask that you confirm the usage conditions. | Voltage | No-load rotating speed No | Stalling torque Ts | Stalling current Is | |---------|----------------------------|-------------------------|---------------------------------| | 24V | 5000r/min | 40mN-m | 1.0A | | 20V | $\frac{20}{24}$ ×5000 4166 | $\frac{20}{24}$ × 40 33 | $\frac{20}{24} \times 1 = 0.83$ | | 18V | $\frac{18}{24}$ ×5000 3750 | $\frac{18}{24}$ ×40 30 | $\frac{18}{24} \times 1 0.75$ | Table 1 ## **Explanation of Terminology** | Term/Symbol | Content | |---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | No-load rotating speed No | Rotating speed with no load | | No-load current Io | Input current with no load | | Stalling torque Ts | Max. value for motor-generated torque. In general, a DC motor's stalling torque is equal to its starting torque. | | Load torque TL | As shown in Figure 3, when a pulley with radius R is attached to the motor and force of F is applied to the pulley's circumference, the torque generated, T _L , can be derived by multiplying F and R (F×R= T _L). T _L =F×R Fig. 3 Note: Using the lock with voltage applied could cause burnout. | #### Relational expressions for torque, rotating speed and current Relational expressions are as follows. If the no-load rotating speed from formula 1 is taken to be No, when load torque T_L is zero, there will be no load; thus, if $T_L = 0$, the following will be the case. No-load rotating speed No will be determined from the size of the motor's friction torque, To. If To is low, the no-load rotating speed from formula 3 will be roughly proportional to the applied voltage. In addition, stalling (starting) torque will equal the load torque when rotating speed N from formula 1 is zero, resulting in the following: Starting torque will be roughly proportional to the applied voltage. Current will be as follows. From this formula, when load torque TL and friction torque are constant, the current will be constant with no relation to applied voltage. The no-load current will be the value that makes the load torque zero in formula 5, but friction torque To will change slightly, in accordance with rotating speed; thus, there will be some change caused by the applied voltage. If motor output is designated as P (W) , torque as T $(N\cdot m)$ and rotating speed as N (r/min) , motor output P (W) will be as follows. $P = 0.105 \times T \times N$ Formula 6 N: Rotating speed To: Motor's friction torque V: Applied voltage TL: Load torque r: Armature-circuit resistance K1 and K2: Motor-specific constant # **Technical Description** #### **Operating Precautions** DC motors are compact and display high output, and their speed is easy to control. They may be driven by battery or any other power supply and are therefore also easy to use. However, inappropriate power supply may lead to burnout or abnormal brush wear. Problems with power supply, installation, and general precautions and problems with a motor installed incircuit will be described. #### Overload and lock-up An excessive amount of load torque is applied during overloaded driving or when locked up, causing an excessive current flow with heat damage being incurred by the motor. Therefore, overloaded or locked-up use is to be avoided. (Locking up for 5 or more seconds results in damage to a motor. Do not lock up a motor for 5 or more seconds.) #### Applied voltage Be sure to use a motor at its rated voltage (+IUVI), and avoid any surge voltage. We can specially manufacture motors designed with an electrical path protecting the motor from surges and reversed polarity. Please contact us for details. #### Applying non-rated supply voltages Applying a voltage higher than the motor's rating results in a temperature increase, leading to heat damage or lowered service life. Scoring of the commutator surface by sparks and mechanical brush wear arising from vibration may also occur. Applying a voltage lower than the motors rating may eventually result in the motor failing to start. This is due to the build up of carbon powder on the commutator. Motors are manufactured for use within +10Vp of their rated specifications. Please contact us if you need to use motors outside their ratings. #### Brush wear promoted by power supply ripples Brush wear may be mechanical wear due to brush and commutator abrasion or electrical wear due to sparking between the brush and commutator, the latter being the most common. Brush wear is there fore greatly affected by ripples in the power supply voltage, and use of general regulated DC is recommended, However, when rectifying AC for use by a motor, be sure to use fullwave rectification with a capacitor or similar element in a smoothing circuit. #### **Ambient conditions** The service life of a DC motor is dependant upon its rectifying action. Care must be taken to ensure good commutation, as dust, oil, gas, water, etc. Water, etc, on the commutator surface results in poor rectification and increases brush wear. #### · Changing the brush position The brushes are generally fixed in position such that rotational speed and current characteristics are maintained equivalent in both clockwise and counterclockwise directions. These are basically determined based on the position of the magnetic poles. Rotating the motor after not carefully relocating parts such as the brush holder (for fixing the brushes) or rear cover results in misalignment of the brushes and magnets. This will produce change in the above characteristics in the rotational direction or cause poor rectification, leading to abnormal brush wear. Therefore, changing of the brush positioning is to be avoided. #### Installed orientation Motors are generally designed for use with a horizontal output shaft. Special consideration must be given to components including bearings and grease washers when intended for an upward- or downward-facing output shaft. Please contact us for details. Further, avoid installing a motor in a manner in which grease from the gear head would tend to enter the motor (e.g., with an upward-facing output shaft). #### Noise generation Electrical noise is generated as a result of sparks from commutation between the brushes and commutator. Please contact us for assistance with lowering noise. #### · Gear heads for intermittent drive The gearhead is assembled with a fixed shaft about which a gear revolves and transmits power. It is not suited to continuous drive. You should maintain the duty ratio between ON and OFF states at no more than 50%, with the maximum ON state not exceeding 5 seconds. ## Motor and gear head combination When combining a gear head with a pinion shaft, gently fit the gear head on turning it right and left, being careful that the pinion and the gear in the gear head do not strongly clash with each other. Using force will cause noise-producing scratches in the pinion and the gear. Scratches are Failures by a decreased service life and are the cause of unforeseen accidents. #### · Load variation Even with torque below the rated load, a motor will incur more damage than might be imagined if there is frequent load variation. Exercise caution with operating conditions and load restrictions. #### Insulation resistance The insulation resistance of a brush motor will naturally continue to decrease as its running time increases. The figures for resistance given in the catalog are for a new motor. #### Service life Service life depends greatly on operating conditions and environment. Please contact us for details. #### Other aspects Oil may seep out of the grease in the gear head depending on operating conditions, storage environment, etc, This does not present any problems in the use of the gear head. However, contamination of the machine or equipment to which the geared motor is fitted may occur.